organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Elhadi Elbay Saad, Yang Farina and Bohari M. Yamin*

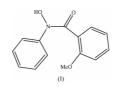
School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

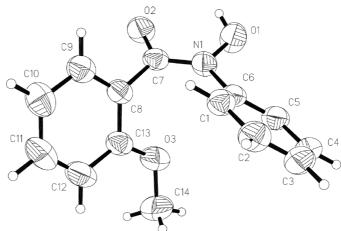
Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.047 wR factor = 0.130 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

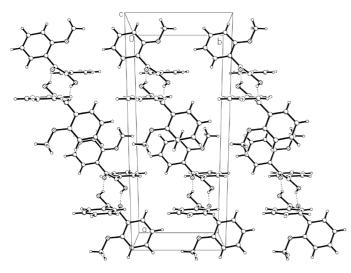

o-Methoxy-N-phenylbenzohydroxamic acid

In the title compound, $C_{14}H_{13}NO_3$, the phenyl ring is *cis* to the methoxyphenyl group across the C–N bond. The crystal structure is stabilized by weak intermolecular O–H···O interactions, forming dimers that are arranged in layers parallel to the *ab* face.


Received 21 May 2003 Accepted 17 June 2003 Online 24 June 2003

Comment

Interest in hydroxamic acid derivatives lies not only in their complexation with metals as a technique for the separation of rare earth metals in particular (Kapoor *et al.*, 1975), but also in their numerous biological and medical applications.



The title compound, (I), consists of discrete molecules that have a *cis* configuration with respect to the positions of the phenyl and methoxyphenyl groups about the C7–N2 bond. The bond lengths and angles are in normal ranges (Allen *et al.*, 1987). The phenyl (C1–C6), methoxyphenyl (O3/C8–C14) [maximum deviation at O3 of 0.018 (1) Å from the mean plane] and O1/O2/N1/C6 fragments are planar. The central O1/O2/N1/C6 fragment makes dihedral angles with the phenyl and methoxyphenyl groups of 39.87 (8) and 63.75 (7)°, respectively. The phenyl and the methoxyphenyl groups are inclined at 64.53 (7) Å with respect to one another. In the

Figure 1

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved The molecular structure of the title compound, (I), with 50% probability displacement ellipsoids.

Figure 2

Packing diagram of compound (I), viewed down the c axis. The dashed lines denote the $O-H \cdots O$ hydrogen bonds.

crystal structure, the molecules are linked by intermolecular hydrogen bonding, $O1 - H1A \cdot \cdot \cdot O2^{i}$ (the symmetry code is as in Table 2), to form dimers that are arranged parallel to the ab face (Fig. 2).

Experimental

An ether solution of o-methoxybenzoyl chloride (8.6 g, 50 mmol) was added dropwise to a stirred cold ethereal solution of N-phenylhydroxylamine (5.45 g, 50 mmol) containing sodium hydrogen carbonate (4.2 g, 50 mmol). The precipitate was filtered and washed with cold ethanol. Good quality crystals suitable for X-ray analysis were obained by recrystallization from ethyl acetate.

Crystal data

$C_{14}H_{13}NO_3$	$D_x = 1.312 \text{ Mg m}^{-3}$
$M_r = 243.25$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 2709
a = 22.451 (3) Å	reflections
b = 8.3709 (13) Å	$\theta = 2.1 - 27.5^{\circ}$
c = 14.921 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 118.531 \ (3)^{\circ}$	T = 293 (2) K
V = 2463.6 (6) Å ³	Block, colourless
<i>Z</i> = 8	$0.50 \times 0.32 \times 0.25 \text{ mm}$
Data collection	
Bruker SMADT ADEX CCD area	2220 reflections with $I > 2\sigma(I)$

Bruker SMART APEX CCD area-	2229 reflections with $I > 2\sigma(I)$	
detector diffractometer	$R_{\rm int} = 0.033$	
ω scans	$\theta_{\rm max} = 27.5^{\circ}$	
Absorption correction: none	$h = -29 \rightarrow 28$	
8106 measured reflections	$k = -10 \rightarrow 9$	
2839 independent reflections	$l = -19 \rightarrow 19$	

Refinement	
------------	--

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0593P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	+ 0.5626P]
$wR(F^2) = 0.130$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
2839 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
163 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

01-N1	1.3931 (14)	O3-C14	1.4251 (19)
02-C7	1.2359 (15)	N1-C7	1.3335 (17)
03-C13	1.3554 (19)	N1-C6	1.4252 (16)
C13-O3-C14	118.22 (13)	C7-N1-C6	131.03 (10)
C7-N1-O1	116.61 (10)	O1-N1-C6	112.23 (10)

Table 2

Hydrogen-bonding geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $O1-H1A\cdots O2^{i}$ 0.82 1.96 2.7200 (14) 153

Symmetry code: (i) $\frac{1}{2} - x, \frac{3}{2} - y, -z$.

After their location in a difference Fourier map, all H atoms were included in the refinement in geometrically calculated positions, and allowed to ride on the parent C or O atoms, with C–H = 0.93-0.97 Å and O-H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$, and $1.5UU_{eq}(O).$

Data collection: SMART (Seimens, 1996); cell refinement: SAINT (Seimens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990)..

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0133.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Kapoor, H. L., Agrawal, Y. K. & Verma, P. C. (1975). Talanta, 22, 193-196.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659-659. Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (1990). Acta Cryst. A46, C-34.